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Benchmarking the MAXQ Instruction-Set Architecture vs. 
RISC Competitors 

 

This article compares the MAXQ instruction set with competing microcontrollers, including the 
PIC16CXXX (mid-range devices), AVR, and MSP430. A table details the strengths and 
weaknesses of each instruction set and architecture. We will use selected code algorithms 
and operations for judging code density and code performance. A final section introduces and 
highlights the MIPS (millions of instructions per second)/mA ratio for each code example.

 

Overview of MAXQ Instruction Set
The MAXQ instruction set is founded upon the transfer-trigger concept. The instruction word is composed simply of 
source and destination operands. While these source and destination operands may represent physical registers, 
the encodings may also represent indirect access points to data memory, stack memory, and the working 
accumulators, and/or may implicitly trigger hardware operations. Additional information on the MAXQ transfer-
triggered architecture can be found in the Intro to MAXQ architecture article. Source and destination encodings for 
specific MAXQ devices are defined in the MAXQ User Guide(s) associated with the device. While some source and 
destination encodings may be device specific, such as those designated for peripheral hardware functions, certain 
fixed encodings are identified for building the MAXQ base instruction set. Figure 1 gives the MAXQ instruction word 
and instruction set mnemonics.

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION
BIT MANIPULATION LOGICAL

MOVE C, #0/#1 Clear/Set Carry AND Logical AND
CPL C Complement Carry OR Logical OR

AND Acc.<b>
Logical AND Carry with 
Accumulator Bit

XOR Logical XOR

OR Acc.<b>
Logical OR Carry with 
Accumulator Bit

CPL, NEG One's, Two's Complement

XOR Acc.<b>
Logical XOR Carry with 
Accumulator Bit

SLA, SLA2, SLA4 Shift Left Arithmetically 1,2,4

MOVE C, Acc.<b> Move Accumulator Bit to Carry SRA, SRA2, SRA4Shift Right Arithmetically 1,2,4
MOVE Acc.<b>,C Move Carry to Accumulator Bit SR Logical Shift Right
MOVE C, src.<b> Move Register Bit to Carry RR, RRC Rotate Right Carry (Ex/In)clusive

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/appnotes.cfm/appnote_number/3222


MOVE dst.<b>, #0/#1 Clear/Set Register Bit RL, RLC Rotate Left Carry (Ex/In)clusive
MATH DATA TRANSFER

ADD, ADDC Add Carry (Ex/In)clusive XCHN
Exchange Accumulator data 
nibbles

SUB, SUBB Subtract Carry (Ex/In)clusive XCH (MAXQ20) Exchange Accumulator data bytes
FLOW CONTROL AND BRANCHING MOVE dst, src Move source to destination

JUMP {C/NC/Z/NZ/E/NE/S}
Jumps - unconditional or 
conditional, relative or absolute

PUSH/POP Push/Pop stack

DJNZ LC[n], src
Decrement Counter, Jump Not 
Zero

POPI
Pop stack and enable interrupts 
(INS<0)

CALL Call - relative or absolute Other

RET {C/NC/Z/NZ/S}
Return - unconditional or 
conditional

NOP No Operation

RETI {C/NC/Z/NZ/S}
Return from Interrupt - 
unconditional or conditional

CMP Compare with Accumulator

Figure 1. The source-to destination transfer illustrated in the MAXQ instruction word produces a small, yet very 
potent instruction set.

Table 1. Instruction Set Comparisons 

ISA STRENGTH WEAKNESS

AVR

●     32 general-purpose working 
registers (accumulators)

●     Data pointers are part of the 
directly addressable working 
registers; allow easy masking 
and bit-manipulation of 
high/low pointer bytes.

●     Read from pointer + 
displacement (0 to 63-byte 
displacement)

●     Stack limited only by internal 
RAM (except 90S1200 with 
no RAM, then stack depth = 
3)

●     Single-cycle operation
●     Relative jumps ±2k (two-

cycle)
●     All AVR have data EEPROM
●     Explicit instructions to 

set/clear each status register 
flag; large group of bit-
manipulating instructions

●     Separate interrup vectors

●     Pipelined instruction fetch
●     Beyond the 32 regs, load (LD)/store (ST) overhead 

becomes a factor LD/ST @X,Y,Z = two cycles,
●     LPM = 3 cycles
●     Reduced support/scope on literal operations (no ADDC, 

EORI; only CPI, ORI, ANDI, SUBI, SBCI, LDI work on 
R16-R31)

●     No rotate instructions exclusive of carry
●     Conditional jump range only+63/-64 (two-cycle)
●     CALL/RET/RETI = four cycles



PIC16CXXX

●     Source, destination bit 
encoded into ALU operations

●     Direct data access (symbolic 
addressing mode) can 
produce dense code and is 
conducive to data overlays

●     four-clock core yields poor execution speed
●     Pipelined instruction fetch
●     Access to upper data-memory banks requires paging 

(RP1:0 bank select)
●     Indirect data access required INDF, FSR registers
●     Cannot directly load W (accumulator)
●     No ADDC, SUBB
●     Stack depth = 8
●     No relative jumps/branches - only absolute (CALL, 

GOTO) or conditional skips (BTFSx)
●     RETLW for code memory reads = wasted code space and 

does not allow CRC of code space
●     CALL/GOTO/RET/RETFIE/RETW all require eight clock 

cycles (two instruction cycles)
●     Single interrupt vector

MAXQ vs. Other Instruction-Set Architectures
One could attempt to compare the MAXQ instruction mnemonics against those of other architectures, but this 
analysis would be difficult and unjustified because each instruction set is architected around specific device 
resources and addressing modes. For this reason, the instruction set and the device architecture (instruction cycle, 
memory model, register set, addressing modes, etc.) are inseparable and must be considered together. Table 1 
summarizes the strengths and weaknesses of the instruction-set architectures being compared.

Code Examples
The best way to compare instruction-set architectures is to define some set of tasks and write the code to perform 
those tasks. The sections that follow describe certain tasks to be performed and summarize the code density and 
performance results for each instruction-set architecture. Example code for the first routine is included in the 
document, while the routines that follow will only be summarized with graphs and text. The code routines 
corresponding to each set of statistics are available from Dallas Semiconductor upon request.

Table 1. Instruction Set Comparisons (continued) 

ISA STRENGTH WEAKNESS

MSP430

●     Extensive source, destination addressing modes are 
encoded within the op code - can yield dense code

●     16-bit internal path
●     Internal memory accessible as word or byte
●     Constant generator (CG) for -1, 0, 1, 2, 4, 8
●     Single-cycle operation
●     Stack limited only by internal RAM
●     Conditional/relative jump destination range = ±512 (two-

cycle)
●     Separate interrupt vectors, single-source flags 

automatically cleared

●     Von Neumann memory map + 
elaborate addressing modes = 
many cycles. The ONLY single-
cycle instructions are those 
dealing exclusively with Rn. 
Peripheral register access = 
three to six cycles

●     Literals not supported by CG 
require extra word

●     Destination operand cannot be 
register indirect or register 
indirect auto-increment

●     No auto-decrement support for 
register indirect

●     Symbolic addressing limits the 
ability to reuse code routines



MAXQ

●     System and peripheral registers are accessible as source 
or destination in the same logical memory space, yielding 
the fastest data transfers

●     Single-cycle operation and no pipelining
●     Single-cycle conditional jump (+127/-128) or two-cycle 

absolute jump (0-65,535)
●     Single-cycle CALL/RET/RETI
●     Auto-decrementing loop-counter registers eliminate 

overhead normally wasted when maintaining a counter
●     Three data pointers with auto-increment/decrement 

support. One data pointer, FP, supports base pointer + 
offset addressing (i.e., BP[Offs]).

●     Auto-increment/decrement/modulo controls for accumulator 
(working register) file

●     Selectable word or byte-access mode for each data pointer
●     Prefixable op code allows a simple means for instruction 

set extensions or enhancements

●     Active accumulator is always 
the implicit destination for ALU 
operations

●     Single-port, synchronous, 
SRAM data memory requires 
that a data pointer be activated 
(selected) before being used

●     Default stack depth = 16, 
however, data pointer hardware 
is ideal for implementing a soft 
stack in data memory

Memory Copy (MemCpy64)
The memory copy example demonstrates the microcontroller's ability to indirectly manipulate blocks of data memory. 
The task is to copy 64 bytes from a data-memory source location to a nonoverlapping data-memory destination. The 
code routines for each microcontroller are provided on the following pages, along with graphs that summarize the 
cycle count and byte count for the copy operation. These routines assume that the pointer and byte count have 
already been defined before the copy operation, and that the bytes to be copied are word-aligned in memory so the 
word access modes of the MSP430 and MAXQ20 can be used.

;======================================AVR======================================
; ramsize=r16                   ;size of block to be copied
; Z-pointer=r30:r31             ;src pointer
; Y-pointer=r28:r29             ;dst pointer
; USES:
; ramtemp=r1                    ;temporary storage register
loop:                                   ; cycles
        ld ramtemp,Z+                   ; 2 @src => temp
        st Y+,ramtemp                   ; 2 temp => @dst
        dec ramsize                     ; 1
        brne loop                       ; 2/1
        ret                             ; 4/5
                                        ;---------
                                        ;(7*bytecount) + return - 1(last brne isn't 
taken).
; WORD COUNT = 5 ; CYCLE COUNT = 451>

;=====================================MAXQ10====================================
; DP[0] ; src pointer (default WBS0=0)
; DP[1] ; (dst-1) pointer (default WBS1=0)
; LC[0] ; byte count (Loop Counter)
loop:                           ;words & cycles
        move DP[0], DP[0]               ; 1 implicit DP[0] pointer selection
        move @++DP[1],@DP[0]++  ; 1
        djnz LC[0], loop                ; 1



        ret                     ; 1
                                ;----------
                                ; 4 / (3*bytecount) +1
; WORD COUNT = 4 ; CYCLE COUNT = 193

;====================================MAXQ20=====================================
; Assuming bytes are word aligned (like MSP430 code) for comparison
; DP[0] ; src pointer (default WBS0=1)
; DP[1] ; (dst-1) pointer (default WBS1=1)
; LC[0] ; byte count / 2 (Loop Counter)
loop:                           ;words/cycles
        move DP[0], DP[0]               ; 1 implicit DP[0] pointer selection
        move @++DP[1],@DP[0]++  ; 1
        djnz LC[0], loop                ; 1
        ret                     ; 1
                                ;----------
                                ; 4 / (3*bytecount/2) +1
; WORD COUNT = 4 ; CYCLE COUNT = 97

;====================================MSP430=====================================
; MSP430 has a 16-bit data bus
; assuming bytes are word aligned, only requires (blocksize/2 transfers).
; R4    ;src pointer
; R5    ;dst pointer
; R6    ;size of block to copy
loop:                           ;words/cycles
        mov @R4+, 0(R5)                 ;2 / 5 @src++ => dst
        add #2, R5              ;1 / 1 const generator makes this 1/1
        decd.b R6               ;1 / 1 really sub #2, R6
        jz loop                         ;1 / 2
        ret                     ;1 / 3
                                ;----------
                                ;6 / (9*(bytecount/2)) + return
; WORD COUNT = 6 ; CYCLE COUNT = 291

;===================================PIC16CXXX===================================
; a     ; src pointer base
; b     ; dst pointer base
; i     ; byte count held in reg file
; USES:
; temp  ; temp data storage
loop:                           ; cycles
        decf i, W               ; 1 i-- => W
        addlw a                         ; 1 (a+i--) => W starting at end
        movwf FSR               ; 1 W => FSR
        movfw INDF              ; 1 W <= @FSR get data
        movwf temp              ; 1 W => temp
        movlw (b-a)             ; 1 diff in dest-src
        addwf FSR, F            ; 1 (b+i--) => W
        movfw temp              ; 1 temp => W
        movwf INDF              ; 1 W => @FSR store data
        decfsz i, F             ; 2/1 i--
        goto loop               ; 2
        return                  ; 2
                                ;----------



 

                                ;11 / (12*bytecount) +1 (ret instead of goto, +1 on 
decfsz)
; WORD COUNT = 12 ; CYCLE COUNT = 769 (*4clks/inst cycle = 3076)

The MAXQ devices provide the best code density and are the clear winners in execution speed. The MAXQ10 
performs the copy operation slower than the MAXQ20 because it uses the default byte-access mode for the data 
pointers. For a MAXQ10 application, if execution speed is deemed more important than code density and the data 
memory to be copied is word-aligned (an assumption already being made for the MSP430 and MAXQ20 example), it 
could use wordaccess mode for the source and destination data pointers. Enabling word mode would allow the 
MAXQ10 copy loop to be cut in half, but would require additional instructions to enable/disable word-access mode. 
The overwhelming performance advantage demonstrated by the MAXQ devices over the competition can be 
attributed to the following architectural strengths:

1. No pipelining - branches do not incur the overhead of flushing the instruction prefetch as other devices do. 

2. Auto-decrement loop counter - alleviates the need to do this manually. 

3. Harvard memory map - program and data do not share the same physical space, allowing simultaneous program 
fetch and data access. 

4. Pre-increment/decrement indirect destination pointer - simplifies and speeds advancement of the destination 
pointer. This is a weakness of the MSP430, which uses 0(R5) to denote @R5, and then must advance that 
destination pointer using another instruction. 

The MAXQ advantages illustrated in the memory copy example translate into similar gains for applications requiring 
frequent input/output buffering in data memory. In terms of performance, the nearest competitor is the MSP430. As 
an example where data memory buffering may be desired, suppose we have an MSP430 device equipped with an 
ADC peripheral with a 16-bit output register. Transferring data from the peripheral output register into data memory 
and incrementing the pointer in preparation for the next ADC output sample might be handled with code such as this: 

                                                ; words/cycles
      mov.w       &ADAT,0(R14)                  ; 3 / 6              Store output word
                    incd.w R14                  ; 1 / 1              Increment pointer
                                                ; 4 / 7

The same transfer operation would look like this on the MAXQ20: 

      move        @++DP[0], ADCOUT              ; 1 / 1

Bubble Sort (BubbleSort)
The bubble sort routine not only demonstrates the ability to access data memory efficiently, but also performs 



arithmetic and/or comparison operations between data bytes and conditionally reorders the bytes. The code routine 
sorts 32 data-memory bytes so they are left in an ascending or descending order. The cycle counts assume that 
byte reordering occurs approximately half of the time as a result of adjacent byte comparisons. The graphs below 
summarize the cycle count and byte count for the sort operation on each microcontroller. 

The MAXQ devices, once again, yield the best code density and are the clear winners in execution speed. The 
MAXQ advantages can be attributed to the same architectural strengths discussed in the memory copy example. 

Hex-to-ASCII Conversion (Hex2Asc)
This conversion routine tests the scope of the microcontrollers' arithmetic and logical operations. It also tests their 
support of literal byte data when translating and expanding data contained within a single byte. The cycle count 
represents an average value, given that each nibble can be one of 16 hex values - 0 to 9, Ato F. The graphs below 
summarize the cycle count and byte count for the conversion operation on each microcontroller. 

For this test routine, the AVR requires one fewer word since its working registers are directly accessible, whereas 
the most efficient method for the MAXQ requires a manual update of the accumulator pointer. The MSP code density 
suffers because it lacks operations for manipulating nibbles, and because literals (#nnnnh) not supported by the 
constant generator must be encoded in a separate word. The MAXQ devices and the Atmel AVR achieve similar 
results in the performance area, while other devices lag behind. The MSP430 performance suffers from the extra 
code words to perform the operation. 

Arithmetic Shift Right 2 Positions (ShRight)
This routine demonstrates the microcontrollers' ability to support 16-bit word data-memory access and ALU 
operations. The desired operation is to arithmetically shift (i.e., preserving the most significant bit) a 16-bit word that 
resides in data memory. It is assumed that the word resides in the first 256 bytes of data memory and is aligned in 
memory to be word addressable by those microcontrollers with the capability. The following graphs summarize the 
cycle count and byte count for the shift operation on each microcontroller.

Both microcontrollers that support 16-bit ALU operations, the MAXQ20 and MSP430, provide significantly better 
code density. With exception of the PIC, all of the 8-bit machines require at least twice the number of code words to 
accomplish the same arithmetic shift. The MAXQ20 offers the best performance, and the MAXQ10, while supporting 



only 8-bit ALU operations, approaches the performance of the 16-bit MSP430.

The MAXQ20 and MSP430 demonstrate higher code density because of their ability to handle 16-bit data more 
efficiently than the 8-bit machines. Each does so, however, in a slightly different fashion. The MAXQ20 transfers the 
16-bit word to be shifted into a working register (accumulator) where it can use a multibit arithmetic shift. The 
MSP430 performs single-bit arithmetic shift operations using the register indirect-addressing mode (RRA @R5), and 
does not explicitly transfer the word from its memory location. While offering higher performance, the MAXQ20 can 
provide the same or better code density as the MSP430, when the arithmetic shifting of a 16-bit word can use one of 
the multibit arithmetic shift op codes (SRA2, SRA4, SLA2, SLA4). 

Bit-Bang Port Pins (BitBang)
This example tests the ability of an instruction-set architecture to decompose bytes, either by direct bit manipulation 
or through shift/rotate, and send the individual bits to a port pin ("bitbanging"). The port-pin outputs separately 
represent clock and data, with the requirement that data must be valid on the rising edge of clock. Since the code is 
directly manipulating the port pins, this test also demonstrates the ease with which I/O port registers can be 
accessed. The graphs below summarize the cycle count and byte count for the port bit-bang operation on each 
microcontroller.

The MAXQ devices again are clearly the best performers. The PIC performance is limited here (as in other 
examples) because of the underlying 4-cycle core architecture. The MSP430 performance is worse and can be 
attributed to both its Von Neumann memory architecture and required use of absolute addressing to access the port 
output register. 

With respect to code density, the MAXQ and PIC have the same word count. Yet the PIC edges out the MAXQ 
among the RISC machines because of its 14-bit program word versus the 16-bit program word of the MAXQ. The 
MSP430 code density suffers because it must use at least two words to access its peripheral registers with the 
absolute-addressing mode (i.e., & register) or when using literals that cannot be reduced by the constant generator 
(e.g., #3h). 

The MSP430 method of accessing its peripheral registers deserves further comment. The microcontroller's primary 



duty is to interface in some way with the outside world. Thus it must control, monitor, and process activity that occurs 
at I/O pins. If the microcontroller embeds very few peripheral-hardware modules, the burden of this activity is left to 
the software. For the software to do anything meaningful, it must read and write the port pins. On the MSP430, these 
port-pin registers reside in the peripheral register space that requires use of the absolute-access mode. Now 
consider a microcontroller that is rich with "smart" peripherals. There will undoubtedly be more peripheral registers 
that must be configured, controlled, and accessed during the course of using the on-chip, dedicated hardware to 
perform the necessary function. On the MSP430, these registers reside in the peripheral register space that requires 
use of the absolute-access mode. Consequently, there is no escape around the code density and performance 
penalty associated with the MSP430 absolute addressing mode.

The "MIPS/mA" Metric
Power consumption is often a significant factor in the selection of a processor or core architecture. The overall power 
consumption of a given system depends upon many factors such as supply voltage and operating frequency, and its 
ability to use low-power modes whenever possible. Reduced supply voltage(s) and/or operating frequency, along 
with frequent use of low-power modes, can greatly reduce the total system power consumption. While the minimum 
supply voltage for a given microcontroller depends greatly upon the device fabrication process technology, the ability 
to reduce operating frequency and use low-power mode(s) is largely dependent upon application requirements that 
can be determined by the system designer. The MIPS/mA metric provides a simple means for assessing the code 
efficiency of a microcontroller while factoring in active current consumption. A common supply voltage should be 
chosen to create meaningful MIPS/mA comparisons between different devices. For the forthcoming comparison, a 
3V-supply voltage is assumed. To factor in differences and efficiencies in the instruction-set architectures being 
compared (i.e., AVR, MSP430, PIC16, MAXQ), it is also necessary to generate separate MIPS/mA ratios for each 
code example generated. 

Figure 2. This example for IccActive vs. MHz illustrates the effects of increased static and dynamic current. 

To determine the "mA" portion of the MIPS/mA ratio, we examine data sheets of the devices. Most microcontroller 
vendors specify typical and maximum active current associated with the maximum operating frequency of the 
device. Assuming very small static (DC) current, these data points allow one to derive typical and maximum mA/MHz 
approximations used for extrapolating active current at any clock frequency. The mA/MHz ratio can be better 
quantified and defined relative to specific system environmental conditions if the vendor provides active current vs. 
temperature/frequency characterization data. Otherwise, we must simply rely on the discrete data points and our 
assumption of very small static current. Increased static (DC) current changes the starting point for the mA vs. MHz 
characteristic curve, thereby limiting the overall gain seen by the system designer when reducing clock frequency 
(reducing dynamic current). Figure 2 gives an example IccActive vs. MHz graph. Table 2 compares mA/MHz 
numbers for the various cores and cites the source for the information. The highlighted mA/MHz number for each 
architecture is used when this term is required in later calculations. 



Figure 3. The MAXQ architecture achieves a high-MIPS performance ratio by executing nearly all instructions at one 
clock per instruction.

The "MIPS" portion of the MIPS/mA metric is used to quantify the difference in performance. We will start by giving a 
simple equation for MIPS in Figure 3.

The number of clocks per instruction (CPI) is highly important when assessing MIPS for a given architecture. 
Architectures such as the Microchip PIC, for example, require multiple clocks per instruction cycle. Additionally, 
architectures often require multiple instruction cycles to execute certain instructions or need cycles to flush the 
instruction pipeline when performing jumps/branches. When comparing architectures, the average performance in 
MIPS is often much less than the peak performance (MIPS) and varies depending upon instruction mix. 

Table 2. Comparison of mA/MHz Numbers for Various Cores 

DEVICE TYPICAL mA/MHz MAX mA/MHz SOURCE

PIC16C55X 0.7 1.25
PIC16C55X data sheet: DC Table 10.1, D010 (VCC = 3V, 

2MHz); XT or RC

PIC16C62X 0.7 1.25
PIC16C62X data sheet: DC Table 12.1, D010 (VCC = 3V, 

2MHz); XT or RC

PIC16LC71 0.35 0.625
PIC16C71X data sheet: DC Table 15.2, D010 (VCC = 3V, 

4MHz); XT or RC

PIC16F62X 0.15 0.175
PIC16F62X data sheet: DC Table 17.1, D010 (VCC = 3V, 

4MHz)

PIC16LF870/1 0.15 0.5
PIC16F870/1 data sheet: DC Table 14.1, D010 (VCC = 3V, 

4MHz); XT or RC

AT90S1200 0.33 0.75
AT90S1200 data sheet: EC Table (3V, 4MHz), Figure 38, 
4mA/12MHz (typ)

AT90S2313 0.50 0.75
AT90S2313 data sheet: EC Table (3V, 4MHz), Figure 57, 
7.5mA/15MHz (typ)

MSP430F1101 0.30 0.35
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V, 

FMCLK = 1MHz)

MPS430C11X1 0.24 0.30
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V, 

FMCLK = 1MHz)

MSP430Fx12x 0.30 0.35
MSP430x12x data sheet: DC specs (VCC = 3V, FMCLK = 

1MHz, FACLK = 32kHz)

MAXQ10 0.30 Simulations

MAXQ20 0.30 Simulations

To produce a more useful indicator and generate a value that helps us reach our MIPS/mA target metric, we divide 



MIPS by MHz. The MIPS/MHz ratio can be interpreted as the average number of instructions that execute in a single 
clock (for the given code example). Using the MIPS/MHz number and the mA/MHz number calculated earlier, the 
MIPS/mA ratio can be generated. The tables below show the MIPS/MHz and MIPS/mA numbers, respectively, for 
each of the earlier code-routine comparisons. 

Table 3. Comparison of MIPS/MHz and MIPS/mA for Selected Code Algorithms 

CORE
MIPS/MHz

MemCpy64 BubbleSort Hex2Asc ShRight BitBang Peak

MAXQ10 1.00 0.99 1.00 1.00 1.00 1

MAXQ20 1.00 0.99 1.00 1.00 1.00 1

PIC 0.23 0.20 0.23 0.25 0.21 0.25

MSP 0.44 0.39 0.64 0.33 0.61 1

AVR 0.57 0.62 0.90 0.71 0.61 1

CORE
MIPS/mA

MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 3.33 3.30 3.33 3.33 3.33

MAXQ20 3.33 3.30 3.33 3.33 3.33

PIC 1.53 1.35 1.53 1.67 1.40

MSP 1.85 1.62 2.66 1.39 1.55

AVR 1.71 1.86 2.69 2.14 1.83

To take the analysis one step further, we must factor in differences between core architecture and instruction-set 
efficiency by dividing the MIPS/mA ratio by the number of instructions that are actually executed for the given code 
sample. The rationale for this extra calculation is that the execution of three single-cycle instructions (with the 
highest MIPS/MHz ratio = 1) is really no better than one 3-cycle instruction (MIPS/MHz ratio = 0.33). Nonetheless, 
the resultant MIPS/mA ratio differs drastically. In fact, most would prefer a single instruction to three if the same task 
were accomplished. By dividing the MIPS/mA ratio by the number of instructions executed, we are adjusting the 
MIPS/mA ratio to the instruction mix used by a given microcontroller to perform a specific task. The resultant values 
have been normalized to the highest performer and are presented in the table below.

Table 4. Comparison of Normalized MIPS/mA Values 

CORE
NORMALIZED (MIPS/mA)

MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 0.50 1.00 1.00 0.40 1.00

MAXQ20 1.00 1.00 0.96 1.00 1.00

PIC 0.06 0.29 0.39 0.33 0.38

MSP 0.42 0.45 0.68 0.56 0.48

AVR 0.19 0.48 0.88 0.26 0.48

Conclusion
The normalized "MIPS/mA" metric gives us a relative performance-to-current ratio for comparing microcontrollers 
with different architectures, instruction sets, and currentconsumption characteristics. A higher normalized "MIPS/mA" 
ratio generally can yield one or both of the following benefits: (1) system clock frequency can be reduced, and (2) the 



duration of time spent in a low-power or sleep mode can be increased. Both of these possibilities serve to reduce the 
system's overall power consumption. Alternately, higher overall system performance can be realized while remaining 
within a given current/power budget. No matter the benefit, the high MIPS/mA ratio produced by the MAXQ 
architecture is a trustworthy indication of efficiency. 

More Information

MAX1460: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2130/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1460.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX1460&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAXQ2000&ln=en

