

MICROCONTROLLERS Apr 30, 2004

Benchmarking the MAXQ Instruction-Set Architecture vs.
RISC Competitors

This article compares the MAXQ instruction set with competing microcontrollers, including the
PIC16CXXX (mid-range devices), AVR, and MSP430. A table details the strengths and
weaknesses of each instruction set and architecture. We will use selected code algorithms
and operations for judging code density and code performance. A final section introduces and
highlights the MIPS (millions of instructions per second)/mA ratio for each code example.

Overview of MAXQ Instruction Set
The MAXQ instruction set is founded upon the transfer-trigger concept. The instruction word is composed simply of
source and destination operands. While these source and destination operands may represent physical registers,
the encodings may also represent indirect access points to data memory, stack memory, and the working
accumulators, and/or may implicitly trigger hardware operations. Additional information on the MAXQ transfer-
triggered architecture can be found in the Intro to MAXQ architecture article. Source and destination encodings for
specific MAXQ devices are defined in the MAXQ User Guide(s) associated with the device. While some source and
destination encodings may be device specific, such as those designated for peripheral hardware functions, certain
fixed encodings are identified for building the MAXQ base instruction set. Figure 1 gives the MAXQ instruction word
and instruction set mnemonics.

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION
BIT MANIPULATION LOGICAL

MOVE C, #0/#1 Clear/Set Carry AND Logical AND
CPL C Complement Carry OR Logical OR

AND Acc.
Logical AND Carry with
Accumulator Bit

XOR Logical XOR

OR Acc.
Logical OR Carry with
Accumulator Bit

CPL, NEG One's, Two's Complement

XOR Acc.
Logical XOR Carry with
Accumulator Bit

SLA, SLA2, SLA4 Shift Left Arithmetically 1,2,4

MOVE C, Acc. Move Accumulator Bit to Carry SRA, SRA2, SRA4Shift Right Arithmetically 1,2,4
MOVE Acc.,C Move Carry to Accumulator Bit SR Logical Shift Right
MOVE C, src. Move Register Bit to Carry RR, RRC Rotate Right Carry (Ex/In)clusive

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/appnotes.cfm/appnote_number/3222

MOVE dst., #0/#1 Clear/Set Register Bit RL, RLC Rotate Left Carry (Ex/In)clusive
MATH DATA TRANSFER

ADD, ADDC Add Carry (Ex/In)clusive XCHN
Exchange Accumulator data
nibbles

SUB, SUBB Subtract Carry (Ex/In)clusive XCH (MAXQ20) Exchange Accumulator data bytes
FLOW CONTROL AND BRANCHING MOVE dst, src Move source to destination

JUMP {C/NC/Z/NZ/E/NE/S}
Jumps - unconditional or
conditional, relative or absolute

PUSH/POP Push/Pop stack

DJNZ LC[n], src
Decrement Counter, Jump Not
Zero

POPI
Pop stack and enable interrupts
(INS<0)

CALL Call - relative or absolute Other

RET {C/NC/Z/NZ/S}
Return - unconditional or
conditional

NOP No Operation

RETI {C/NC/Z/NZ/S}
Return from Interrupt -
unconditional or conditional

CMP Compare with Accumulator

Figure 1. The source-to destination transfer illustrated in the MAXQ instruction word produces a small, yet very
potent instruction set.

Table 1. Instruction Set Comparisons

ISA STRENGTH WEAKNESS

AVR

● 32 general-purpose working
registers (accumulators)

● Data pointers are part of the
directly addressable working
registers; allow easy masking
and bit-manipulation of
high/low pointer bytes.

● Read from pointer +
displacement (0 to 63-byte
displacement)

● Stack limited only by internal
RAM (except 90S1200 with
no RAM, then stack depth =
3)

● Single-cycle operation
● Relative jumps ±2k (two-

cycle)
● All AVR have data EEPROM
● Explicit instructions to

set/clear each status register
flag; large group of bit-
manipulating instructions

● Separate interrup vectors

● Pipelined instruction fetch
● Beyond the 32 regs, load (LD)/store (ST) overhead

becomes a factor LD/ST @X,Y,Z = two cycles,
● LPM = 3 cycles
● Reduced support/scope on literal operations (no ADDC,

EORI; only CPI, ORI, ANDI, SUBI, SBCI, LDI work on
R16-R31)

● No rotate instructions exclusive of carry
● Conditional jump range only+63/-64 (two-cycle)
● CALL/RET/RETI = four cycles

PIC16CXXX

● Source, destination bit
encoded into ALU operations

● Direct data access (symbolic
addressing mode) can
produce dense code and is
conducive to data overlays

● four-clock core yields poor execution speed
● Pipelined instruction fetch
● Access to upper data-memory banks requires paging

(RP1:0 bank select)
● Indirect data access required INDF, FSR registers
● Cannot directly load W (accumulator)
● No ADDC, SUBB
● Stack depth = 8
● No relative jumps/branches - only absolute (CALL,

GOTO) or conditional skips (BTFSx)
● RETLW for code memory reads = wasted code space and

does not allow CRC of code space
● CALL/GOTO/RET/RETFIE/RETW all require eight clock

cycles (two instruction cycles)
● Single interrupt vector

MAXQ vs. Other Instruction-Set Architectures
One could attempt to compare the MAXQ instruction mnemonics against those of other architectures, but this
analysis would be difficult and unjustified because each instruction set is architected around specific device
resources and addressing modes. For this reason, the instruction set and the device architecture (instruction cycle,
memory model, register set, addressing modes, etc.) are inseparable and must be considered together. Table 1
summarizes the strengths and weaknesses of the instruction-set architectures being compared.

Code Examples
The best way to compare instruction-set architectures is to define some set of tasks and write the code to perform
those tasks. The sections that follow describe certain tasks to be performed and summarize the code density and
performance results for each instruction-set architecture. Example code for the first routine is included in the
document, while the routines that follow will only be summarized with graphs and text. The code routines
corresponding to each set of statistics are available from Dallas Semiconductor upon request.

Table 1. Instruction Set Comparisons (continued)

ISA STRENGTH WEAKNESS

MSP430

● Extensive source, destination addressing modes are
encoded within the op code - can yield dense code

● 16-bit internal path
● Internal memory accessible as word or byte
● Constant generator (CG) for -1, 0, 1, 2, 4, 8
● Single-cycle operation
● Stack limited only by internal RAM
● Conditional/relative jump destination range = ±512 (two-

cycle)
● Separate interrupt vectors, single-source flags

automatically cleared

● Von Neumann memory map +
elaborate addressing modes =
many cycles. The ONLY single-
cycle instructions are those
dealing exclusively with Rn.
Peripheral register access =
three to six cycles

● Literals not supported by CG
require extra word

● Destination operand cannot be
register indirect or register
indirect auto-increment

● No auto-decrement support for
register indirect

● Symbolic addressing limits the
ability to reuse code routines

MAXQ

● System and peripheral registers are accessible as source
or destination in the same logical memory space, yielding
the fastest data transfers

● Single-cycle operation and no pipelining
● Single-cycle conditional jump (+127/-128) or two-cycle

absolute jump (0-65,535)
● Single-cycle CALL/RET/RETI
● Auto-decrementing loop-counter registers eliminate

overhead normally wasted when maintaining a counter
● Three data pointers with auto-increment/decrement

support. One data pointer, FP, supports base pointer +
offset addressing (i.e., BP[Offs]).

● Auto-increment/decrement/modulo controls for accumulator
(working register) file

● Selectable word or byte-access mode for each data pointer
● Prefixable op code allows a simple means for instruction

set extensions or enhancements

● Active accumulator is always
the implicit destination for ALU
operations

● Single-port, synchronous,
SRAM data memory requires
that a data pointer be activated
(selected) before being used

● Default stack depth = 16,
however, data pointer hardware
is ideal for implementing a soft
stack in data memory

Memory Copy (MemCpy64)
The memory copy example demonstrates the microcontroller's ability to indirectly manipulate blocks of data memory.
The task is to copy 64 bytes from a data-memory source location to a nonoverlapping data-memory destination. The
code routines for each microcontroller are provided on the following pages, along with graphs that summarize the
cycle count and byte count for the copy operation. These routines assume that the pointer and byte count have
already been defined before the copy operation, and that the bytes to be copied are word-aligned in memory so the
word access modes of the MSP430 and MAXQ20 can be used.

;======================================AVR======================================
; ramsize=r16 ;size of block to be copied
; Z-pointer=r30:r31 ;src pointer
; Y-pointer=r28:r29 ;dst pointer
; USES:
; ramtemp=r1 ;temporary storage register
loop: ; cycles
 ld ramtemp,Z+ ; 2 @src => temp
 st Y+,ramtemp ; 2 temp => @dst
 dec ramsize ; 1
 brne loop ; 2/1
 ret ; 4/5
 ;---------
 ;(7*bytecount) + return - 1(last brne isn't
taken).
; WORD COUNT = 5 ; CYCLE COUNT = 451>

;=====================================MAXQ10====================================
; DP[0] ; src pointer (default WBS0=0)
; DP[1] ; (dst-1) pointer (default WBS1=0)
; LC[0] ; byte count (Loop Counter)
loop: ;words & cycles
 move DP[0], DP[0] ; 1 implicit DP[0] pointer selection
 move @++DP[1],@DP[0]++ ; 1
 djnz LC[0], loop ; 1

 ret ; 1
 ;----------
 ; 4 / (3*bytecount) +1
; WORD COUNT = 4 ; CYCLE COUNT = 193

;====================================MAXQ20=====================================
; Assuming bytes are word aligned (like MSP430 code) for comparison
; DP[0] ; src pointer (default WBS0=1)
; DP[1] ; (dst-1) pointer (default WBS1=1)
; LC[0] ; byte count / 2 (Loop Counter)
loop: ;words/cycles
 move DP[0], DP[0] ; 1 implicit DP[0] pointer selection
 move @++DP[1],@DP[0]++ ; 1
 djnz LC[0], loop ; 1
 ret ; 1
 ;----------
 ; 4 / (3*bytecount/2) +1
; WORD COUNT = 4 ; CYCLE COUNT = 97

;====================================MSP430=====================================
; MSP430 has a 16-bit data bus
; assuming bytes are word aligned, only requires (blocksize/2 transfers).
; R4 ;src pointer
; R5 ;dst pointer
; R6 ;size of block to copy
loop: ;words/cycles
 mov @R4+, 0(R5) ;2 / 5 @src++ => dst
 add #2, R5 ;1 / 1 const generator makes this 1/1
 decd.b R6 ;1 / 1 really sub #2, R6
 jz loop ;1 / 2
 ret ;1 / 3
 ;----------
 ;6 / (9*(bytecount/2)) + return
; WORD COUNT = 6 ; CYCLE COUNT = 291

;===================================PIC16CXXX===================================
; a ; src pointer base
; b ; dst pointer base
; i ; byte count held in reg file
; USES:
; temp ; temp data storage
loop: ; cycles
 decf i, W ; 1 i-- => W
 addlw a ; 1 (a+i--) => W starting at end
 movwf FSR ; 1 W => FSR
 movfw INDF ; 1 W <= @FSR get data
 movwf temp ; 1 W => temp
 movlw (b-a) ; 1 diff in dest-src
 addwf FSR, F ; 1 (b+i--) => W
 movfw temp ; 1 temp => W
 movwf INDF ; 1 W => @FSR store data
 decfsz i, F ; 2/1 i--
 goto loop ; 2
 return ; 2
 ;----------

 ;11 / (12*bytecount) +1 (ret instead of goto, +1 on
decfsz)
; WORD COUNT = 12 ; CYCLE COUNT = 769 (*4clks/inst cycle = 3076)

The MAXQ devices provide the best code density and are the clear winners in execution speed. The MAXQ10
performs the copy operation slower than the MAXQ20 because it uses the default byte-access mode for the data
pointers. For a MAXQ10 application, if execution speed is deemed more important than code density and the data
memory to be copied is word-aligned (an assumption already being made for the MSP430 and MAXQ20 example), it
could use wordaccess mode for the source and destination data pointers. Enabling word mode would allow the
MAXQ10 copy loop to be cut in half, but would require additional instructions to enable/disable word-access mode.
The overwhelming performance advantage demonstrated by the MAXQ devices over the competition can be
attributed to the following architectural strengths:

1. No pipelining - branches do not incur the overhead of flushing the instruction prefetch as other devices do.

2. Auto-decrement loop counter - alleviates the need to do this manually.

3. Harvard memory map - program and data do not share the same physical space, allowing simultaneous program
fetch and data access.

4. Pre-increment/decrement indirect destination pointer - simplifies and speeds advancement of the destination
pointer. This is a weakness of the MSP430, which uses 0(R5) to denote @R5, and then must advance that
destination pointer using another instruction.

The MAXQ advantages illustrated in the memory copy example translate into similar gains for applications requiring
frequent input/output buffering in data memory. In terms of performance, the nearest competitor is the MSP430. As
an example where data memory buffering may be desired, suppose we have an MSP430 device equipped with an
ADC peripheral with a 16-bit output register. Transferring data from the peripheral output register into data memory
and incrementing the pointer in preparation for the next ADC output sample might be handled with code such as this:

 ; words/cycles
 mov.w &ADAT,0(R14) ; 3 / 6 Store output word
 incd.w R14 ; 1 / 1 Increment pointer
 ; 4 / 7

The same transfer operation would look like this on the MAXQ20:

 move @++DP[0], ADCOUT ; 1 / 1

Bubble Sort (BubbleSort)
The bubble sort routine not only demonstrates the ability to access data memory efficiently, but also performs

arithmetic and/or comparison operations between data bytes and conditionally reorders the bytes. The code routine
sorts 32 data-memory bytes so they are left in an ascending or descending order. The cycle counts assume that
byte reordering occurs approximately half of the time as a result of adjacent byte comparisons. The graphs below
summarize the cycle count and byte count for the sort operation on each microcontroller.

The MAXQ devices, once again, yield the best code density and are the clear winners in execution speed. The
MAXQ advantages can be attributed to the same architectural strengths discussed in the memory copy example.

Hex-to-ASCII Conversion (Hex2Asc)
This conversion routine tests the scope of the microcontrollers' arithmetic and logical operations. It also tests their
support of literal byte data when translating and expanding data contained within a single byte. The cycle count
represents an average value, given that each nibble can be one of 16 hex values - 0 to 9, Ato F. The graphs below
summarize the cycle count and byte count for the conversion operation on each microcontroller.

For this test routine, the AVR requires one fewer word since its working registers are directly accessible, whereas
the most efficient method for the MAXQ requires a manual update of the accumulator pointer. The MSP code density
suffers because it lacks operations for manipulating nibbles, and because literals (#nnnnh) not supported by the
constant generator must be encoded in a separate word. The MAXQ devices and the Atmel AVR achieve similar
results in the performance area, while other devices lag behind. The MSP430 performance suffers from the extra
code words to perform the operation.

Arithmetic Shift Right 2 Positions (ShRight)
This routine demonstrates the microcontrollers' ability to support 16-bit word data-memory access and ALU
operations. The desired operation is to arithmetically shift (i.e., preserving the most significant bit) a 16-bit word that
resides in data memory. It is assumed that the word resides in the first 256 bytes of data memory and is aligned in
memory to be word addressable by those microcontrollers with the capability. The following graphs summarize the
cycle count and byte count for the shift operation on each microcontroller.

Both microcontrollers that support 16-bit ALU operations, the MAXQ20 and MSP430, provide significantly better
code density. With exception of the PIC, all of the 8-bit machines require at least twice the number of code words to
accomplish the same arithmetic shift. The MAXQ20 offers the best performance, and the MAXQ10, while supporting

only 8-bit ALU operations, approaches the performance of the 16-bit MSP430.

The MAXQ20 and MSP430 demonstrate higher code density because of their ability to handle 16-bit data more
efficiently than the 8-bit machines. Each does so, however, in a slightly different fashion. The MAXQ20 transfers the
16-bit word to be shifted into a working register (accumulator) where it can use a multibit arithmetic shift. The
MSP430 performs single-bit arithmetic shift operations using the register indirect-addressing mode (RRA @R5), and
does not explicitly transfer the word from its memory location. While offering higher performance, the MAXQ20 can
provide the same or better code density as the MSP430, when the arithmetic shifting of a 16-bit word can use one of
the multibit arithmetic shift op codes (SRA2, SRA4, SLA2, SLA4).

Bit-Bang Port Pins (BitBang)
This example tests the ability of an instruction-set architecture to decompose bytes, either by direct bit manipulation
or through shift/rotate, and send the individual bits to a port pin ("bitbanging"). The port-pin outputs separately
represent clock and data, with the requirement that data must be valid on the rising edge of clock. Since the code is
directly manipulating the port pins, this test also demonstrates the ease with which I/O port registers can be
accessed. The graphs below summarize the cycle count and byte count for the port bit-bang operation on each
microcontroller.

The MAXQ devices again are clearly the best performers. The PIC performance is limited here (as in other
examples) because of the underlying 4-cycle core architecture. The MSP430 performance is worse and can be
attributed to both its Von Neumann memory architecture and required use of absolute addressing to access the port
output register.

With respect to code density, the MAXQ and PIC have the same word count. Yet the PIC edges out the MAXQ
among the RISC machines because of its 14-bit program word versus the 16-bit program word of the MAXQ. The
MSP430 code density suffers because it must use at least two words to access its peripheral registers with the
absolute-addressing mode (i.e., & register) or when using literals that cannot be reduced by the constant generator
(e.g., #3h).

The MSP430 method of accessing its peripheral registers deserves further comment. The microcontroller's primary

duty is to interface in some way with the outside world. Thus it must control, monitor, and process activity that occurs
at I/O pins. If the microcontroller embeds very few peripheral-hardware modules, the burden of this activity is left to
the software. For the software to do anything meaningful, it must read and write the port pins. On the MSP430, these
port-pin registers reside in the peripheral register space that requires use of the absolute-access mode. Now
consider a microcontroller that is rich with "smart" peripherals. There will undoubtedly be more peripheral registers
that must be configured, controlled, and accessed during the course of using the on-chip, dedicated hardware to
perform the necessary function. On the MSP430, these registers reside in the peripheral register space that requires
use of the absolute-access mode. Consequently, there is no escape around the code density and performance
penalty associated with the MSP430 absolute addressing mode.

The "MIPS/mA" Metric
Power consumption is often a significant factor in the selection of a processor or core architecture. The overall power
consumption of a given system depends upon many factors such as supply voltage and operating frequency, and its
ability to use low-power modes whenever possible. Reduced supply voltage(s) and/or operating frequency, along
with frequent use of low-power modes, can greatly reduce the total system power consumption. While the minimum
supply voltage for a given microcontroller depends greatly upon the device fabrication process technology, the ability
to reduce operating frequency and use low-power mode(s) is largely dependent upon application requirements that
can be determined by the system designer. The MIPS/mA metric provides a simple means for assessing the code
efficiency of a microcontroller while factoring in active current consumption. A common supply voltage should be
chosen to create meaningful MIPS/mA comparisons between different devices. For the forthcoming comparison, a
3V-supply voltage is assumed. To factor in differences and efficiencies in the instruction-set architectures being
compared (i.e., AVR, MSP430, PIC16, MAXQ), it is also necessary to generate separate MIPS/mA ratios for each
code example generated.

Figure 2. This example for IccActive vs. MHz illustrates the effects of increased static and dynamic current.

To determine the "mA" portion of the MIPS/mA ratio, we examine data sheets of the devices. Most microcontroller
vendors specify typical and maximum active current associated with the maximum operating frequency of the
device. Assuming very small static (DC) current, these data points allow one to derive typical and maximum mA/MHz
approximations used for extrapolating active current at any clock frequency. The mA/MHz ratio can be better
quantified and defined relative to specific system environmental conditions if the vendor provides active current vs.
temperature/frequency characterization data. Otherwise, we must simply rely on the discrete data points and our
assumption of very small static current. Increased static (DC) current changes the starting point for the mA vs. MHz
characteristic curve, thereby limiting the overall gain seen by the system designer when reducing clock frequency
(reducing dynamic current). Figure 2 gives an example IccActive vs. MHz graph. Table 2 compares mA/MHz
numbers for the various cores and cites the source for the information. The highlighted mA/MHz number for each
architecture is used when this term is required in later calculations.

Figure 3. The MAXQ architecture achieves a high-MIPS performance ratio by executing nearly all instructions at one
clock per instruction.

The "MIPS" portion of the MIPS/mA metric is used to quantify the difference in performance. We will start by giving a
simple equation for MIPS in Figure 3.

The number of clocks per instruction (CPI) is highly important when assessing MIPS for a given architecture.
Architectures such as the Microchip PIC, for example, require multiple clocks per instruction cycle. Additionally,
architectures often require multiple instruction cycles to execute certain instructions or need cycles to flush the
instruction pipeline when performing jumps/branches. When comparing architectures, the average performance in
MIPS is often much less than the peak performance (MIPS) and varies depending upon instruction mix.

Table 2. Comparison of mA/MHz Numbers for Various Cores

DEVICE TYPICAL mA/MHz MAX mA/MHz SOURCE

PIC16C55X 0.7 1.25
PIC16C55X data sheet: DC Table 10.1, D010 (VCC = 3V,

2MHz); XT or RC

PIC16C62X 0.7 1.25
PIC16C62X data sheet: DC Table 12.1, D010 (VCC = 3V,

2MHz); XT or RC

PIC16LC71 0.35 0.625
PIC16C71X data sheet: DC Table 15.2, D010 (VCC = 3V,

4MHz); XT or RC

PIC16F62X 0.15 0.175
PIC16F62X data sheet: DC Table 17.1, D010 (VCC = 3V,

4MHz)

PIC16LF870/1 0.15 0.5
PIC16F870/1 data sheet: DC Table 14.1, D010 (VCC = 3V,

4MHz); XT or RC

AT90S1200 0.33 0.75
AT90S1200 data sheet: EC Table (3V, 4MHz), Figure 38,
4mA/12MHz (typ)

AT90S2313 0.50 0.75
AT90S2313 data sheet: EC Table (3V, 4MHz), Figure 57,
7.5mA/15MHz (typ)

MSP430F1101 0.30 0.35
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,

FMCLK = 1MHz)

MPS430C11X1 0.24 0.30
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,

FMCLK = 1MHz)

MSP430Fx12x 0.30 0.35
MSP430x12x data sheet: DC specs (VCC = 3V, FMCLK =

1MHz, FACLK = 32kHz)

MAXQ10 0.30 Simulations

MAXQ20 0.30 Simulations

To produce a more useful indicator and generate a value that helps us reach our MIPS/mA target metric, we divide

MIPS by MHz. The MIPS/MHz ratio can be interpreted as the average number of instructions that execute in a single
clock (for the given code example). Using the MIPS/MHz number and the mA/MHz number calculated earlier, the
MIPS/mA ratio can be generated. The tables below show the MIPS/MHz and MIPS/mA numbers, respectively, for
each of the earlier code-routine comparisons.

Table 3. Comparison of MIPS/MHz and MIPS/mA for Selected Code Algorithms

CORE
MIPS/MHz

MemCpy64 BubbleSort Hex2Asc ShRight BitBang Peak

MAXQ10 1.00 0.99 1.00 1.00 1.00 1

MAXQ20 1.00 0.99 1.00 1.00 1.00 1

PIC 0.23 0.20 0.23 0.25 0.21 0.25

MSP 0.44 0.39 0.64 0.33 0.61 1

AVR 0.57 0.62 0.90 0.71 0.61 1

CORE
MIPS/mA

MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 3.33 3.30 3.33 3.33 3.33

MAXQ20 3.33 3.30 3.33 3.33 3.33

PIC 1.53 1.35 1.53 1.67 1.40

MSP 1.85 1.62 2.66 1.39 1.55

AVR 1.71 1.86 2.69 2.14 1.83

To take the analysis one step further, we must factor in differences between core architecture and instruction-set
efficiency by dividing the MIPS/mA ratio by the number of instructions that are actually executed for the given code
sample. The rationale for this extra calculation is that the execution of three single-cycle instructions (with the
highest MIPS/MHz ratio = 1) is really no better than one 3-cycle instruction (MIPS/MHz ratio = 0.33). Nonetheless,
the resultant MIPS/mA ratio differs drastically. In fact, most would prefer a single instruction to three if the same task
were accomplished. By dividing the MIPS/mA ratio by the number of instructions executed, we are adjusting the
MIPS/mA ratio to the instruction mix used by a given microcontroller to perform a specific task. The resultant values
have been normalized to the highest performer and are presented in the table below.

Table 4. Comparison of Normalized MIPS/mA Values

CORE
NORMALIZED (MIPS/mA)

MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 0.50 1.00 1.00 0.40 1.00

MAXQ20 1.00 1.00 0.96 1.00 1.00

PIC 0.06 0.29 0.39 0.33 0.38

MSP 0.42 0.45 0.68 0.56 0.48

AVR 0.19 0.48 0.88 0.26 0.48

Conclusion
The normalized "MIPS/mA" metric gives us a relative performance-to-current ratio for comparing microcontrollers
with different architectures, instruction sets, and currentconsumption characteristics. A higher normalized "MIPS/mA"
ratio generally can yield one or both of the following benefits: (1) system clock frequency can be reduced, and (2) the

duration of time spent in a low-power or sleep mode can be increased. Both of these possibilities serve to reduce the
system's overall power consumption. Alternately, higher overall system performance can be realized while remaining
within a given current/power budget. No matter the benefit, the high MIPS/mA ratio produced by the MAXQ
architecture is a trustworthy indication of efficiency.

More Information

MAX1460: QuickView -- Full (PDF) Data Sheet -- Free Samples

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2130/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1460.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX1460&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAXQ2000&ln=en

